
 Page 1 of 1

DISCLAIMER FOR FRONT PAGE OF MATERIALS TO BE MADE AVAILABLE VIA ETI INTERNET SITE

1. “Save to the extent set out in paragraph 2 below, this document and its contents are

made available to you via the ETI’s Internet Site “as is” without any representations,

conditions, warranties or other assurance of any kind. The ETI and the authors,

together with their employees, directors, servants or agents exclude to the maximum

extent permissible by law all representations, warranties, conditions or other

assurance whatsoever (whether express or implied) regarding the use of this

document or its content including any warranties of title, merchantability, accuracy,

completeness, non-infringement or that the document or its contents are of satisfactory

or any particular quality or fit for any particular purpose. Any person accessing this

document and using it or any of its contents accepts all risk in doing so.

2. Notwithstanding any statement to the contrary contained on the face of this document,

the ETI confirms that the authors of the document have consented to its publication by

the ETI.”

 Page 1

Project ReDAPT
Deliverable MD1.2
Authors DD Apsley, PK Stansby, T Stallard, I Afgan, J McNaughton
Circulation University of Manchester, EdF
To be approved by Prof. Dominique Laurence
Date 21 September 2011
Version 2 (revision 5)

 Page 2

EXECUTIVE SUMMARY

This document is the second in a series describing progress with the application of EdF’s
open-source CFD solver Code_Saturne toward a full marine-current-turbine simulation,
including turbulence and waves, as part of the wider ReDAPT project.

In order to compute flow about a moving rotor in an otherwise stationary domain it has been
necessary to develop our own sliding-interface method from scratch. A detailed description
of this interfacing method is given in this report, together with validation studies for its
implementation in Code_Saturne and an in-house research code STREAM and guidelines (for
example, maximum timestep and inner-loop convergence criteria) for its use.

An idealised geometry has been produced, based on the turbine used for flume experiments
by Prof. Bahaj’s group at the University of Southampton. The model geometry includes both
rotor and support structure with computational meshes of between 2 and 4 million nodes. A
description of this model is given and details of the blockage corrections necessary for
simulating open-water conditions are included for reference.

Reynolds-averaged-Navier-Stokes (RANS) calculations with the standard k- turbulence
model and large-eddy-simulation (LES) calculations with the Smagorinsky model and a basic
synthetic eddy model (SEM) for inflow turbulence have been undertaken and are reported
here. Calculations were performed on EdF’s Blue Gene computer using 2048 processors and
the University of Manchester’s Computational Shared Facility (CSF) with 256 cores.

A parametric study of the effects of input turbulence and operating point (tip-speed ratio,
TSR) has been undertaken. Both RANS and LES calculations have been performed with
turbulence levels of 0% (nominal), 10% and 20%, with TSR values of 4, 6 (design) and 8.
RANS calculations gave good results for mean thrust coefficient, but low values for power
coefficient and tended to diffuse vortex structures in the wake. LES calculations gave slightly
better predictions of power and more information about the wake vortex structures and the
response of the fluctuating loads to a change in inflow turbulence levels.

 Page 3

CONTENTS

1. INTRODUCTION
1.1 Scope of this Document
1.2 Specific Tasks Associated With This Project
1.3 Staff on the Project

2. SLIDING-MESH INTERFACE METHOD
2.1 Motivation
2.2 General Outline of Method
2.3 Implementation in STREAM
2.4 Implementation in Code_Saturne

3. MARINE CURRENT TURBINE: GEOMETRY AND MESH
3.1 Description of Experiment
3.2 Computational Mesh
3.3 Flow Parameters
3.4 Blockage Correction
3.5 RANS simulations
3.6 LES simulations

4. MARINE CURRENT TURBINE: RESULTS

5. NEXT STAGES

REFERENCES

 Page 4

1. INTRODUCTION

1.1 Scope of this Document

This report explains the work undertaken to complete milestone MD1.2; specifically:
• Description of a new sliding-mesh interface method and its implementation.
• 3-d simulation of a rotor using the sliding-mesh method (with imposed rotation):
 – including blade set, nacelle and support mast;
 – based on the geometry of Bahaj et al., (2007a,b);
 – RANS turbulence modelling;
 – LES turbulence modelling.

1.2 Specific Tasks Associated With This Project

The specific milestones for the CFD work on the ReDAPT project are as follows. Major
items in this report are underlined.

MD1.1

Ideal turbine geometry.
Imposed rotation of a single cylindrical mesh (Coriolis forces or ALE).
RANS turbulence.
No waves.
Report to identify development necessary for sliding mesh.

MD1.2
(This Report)

Ideal turbine geometry.
Rotation via sliding mesh (including a description of the method).
RANS and LES turbulence.
No waves.

MD1.3 Real turbine geometry.
Sliding mesh.
RANS turbulence.
Waves.

MD1.4 Real turbine geometry.
Sliding mesh.
LES turbulence.
Waves.
Comparison of loads, velocity and near-wake turbulence with field data.

1.3 Staff on the Project

The research staff employed on this project are a PhD student (James McNaughton) and a
post-doctoral research associate (Dr Imran Afgan).

James McNaughton started in September 2009 and has PhD supervisors Dr David Apsley and
Dr Alistair Revell. Overall responsibility for the University of Manchester’s contribution to
ReDAPT rests with Prof. Peter Stansby. Other Manchester or ex-Manchester staff who have
contributed informal assistance in the project include Dr Juan Uribe (Code_Saturne
expertise), Dr Tim Stallard (related PerAWAT project), Olivier Cozzi (moving-mesh/free-
surface methodology), Yacine Addad (preceded Dr Afgan as RA on this project).

 Page 5

2. SLIDING-MESH INTERFACE METHOD

2.1 Motivation

In order to simulate a rotating marine-current turbine in the vicinity of a solid lower boundary
and wave-affected free surface the basic mesh regions will be as shown in Figure 2.1. These
comprise an inner cylindrical block that rotates with the turbine blades and an outer block
that includes the stationary support structure.

waves

rotating
internal mesh

non-rotating
external mesh

Figure 2.1: mesh regions with a sliding interface.

The arbitrary Lagrangian-Eulerian (ALE) method is used to handle the mesh movement
within the rotating block. If the free surface is subject to wave motion then the ALE method
can also be used for the vertical stretching of the upper part of the outer block; otherwise the
outer mesh is stationary.

Between the rotating cylindrical part and the outer mesh there are non-conforming and
sliding interfaces (on front, back and curved surfaces of the cylinder). We have developed our
own generic method for handling sliding interfaces. This is described in Sections 2.2–2.4
below.

Note that sliding interfaces are not a new CFD challenge. For understandable commercial
reasons the procedures implemented in commercial codes like Fluent and StarCCM+ are not
fully documented in the open literature. However, some documentation is available for the
interfacing methods employed in other open-source and university research codes.
OpenFOAM’s general grid interface (GGI, see Beaudoin and Jasak, 2008) divides adjacent
faces into weighting factors and divides the fluxes into neighbouring cells. OpenFOAM also
has a patching method (Petit et al., 2009) where meshes on either side of the interface are
joined together at each time-step. The two methods are quite similar with the second being
more conservative by formulation, albeit more computationally expensive. The method used
by Blades and Marcum (2007) uses halo cells on either side of the interface which are
projected a distance based on the host and neighbouring meshes. The halo-cell method is
quite common and is also used by Steijl and Barakos (2008) and Fenwick and Allen (2006).

 Page 6

Our own interface method also uses halo (elsewhere, “ghost”) data, but the method is slightly
simpler in that only halo nodes (rather than whole cells) are constructed and they are used
only to assign values on cell faces abutting the interface. Because we have used it in
development and testing we will describe the implementation of the interface routines in both
our own multi-block-structured-mesh code STREAM (Lien et al., 1996) and EdF’s
unstructured-mesh Code_Saturne (Archambeau, 2004).

2.2 General Outline of Method

A general interface is depicted in Figure 2.2 below. In this case two regions of cells, here
designated L and R, meet at a non-conforming (and generally sliding and curved) interface.

interfaceL region R region

Figure 2.2: general non-conforming interface.

The basic idea of the method is to treat the interface as an internal Dirichlet boundary for the
individual region on each side. Linkage between the two regions is achieved using the values
of variables on the boundary cell faces. The process for finding these cell-face-centre values
is illustrated in Figure 2.3.

boundaryL region R regionboundary

P H
H P

boundary node

halo node

Figure 2.3: Location of boundary and halo nodes.

 Page 7

(1) For each cell abutting the boundary locate a halo node in the opposite region by

extrapolation:
)(PBBH xxxx −+=

 Here, P is the node at cell centre, B is the cell-face centre on the boundary and H is
the halo node.

(2) For each variable φ, interpolate (the method varies between codes: see Sections 2.3

and 2.4) from values in the opposite region to find the value at the halo node.

(3) The boundary value is then recovered by simple linear interpolation:

)(
2

1
HPB φ+φ=φ

The following should be noted.
• Where interpolation to produce a value at the halo node implicitly involves a

contribution from the boundary face value, the updating of that boundary value is
necessarily iterative.

• For the method to work properly the halo node should ideally be located in the first
line of cells abutting the interface. This requires the cells immediately on either side
of the interface to be of roughly comparable depth perpendicular to the interface. In
most cases this is automatically done by the grid generator.

• The mesh motion in one timestep should not be so large that the halo nodes “skip”
cells in the neighbouring region. Numerical experiment suggests that this limit should
be even more conservative; we prefer to ensure that the interface slides by no more
than half a cell in one timestep.

• Linear interpolation means that the method is formally second-order accurate in
space.

• Because the interface passes values of φ and not flux(φ) the method is not guaranteed
to be conservative. However, numerical experiment confirms that global mass-flux
errors are less than 0.01%.

The method of producing a value of a variable at a halo node is code-specific and is described
below for two CFD codes: our own in-house multi-block structured code STREAM and EdF’s
unstructured Code_Saturne. Specifically:
• STREAM uses a “which-cell-am-I-in?/linearly-interpolate” approach to find values at

the halo node. This is straightforward and very efficient but is restricted to structured
meshes.

• Code_Saturne uses a “which-is-the-closest-node?/Taylor-series-expansion” approach
to find values at the halo node.

 Page 8

2.3 Implementation in STREAM

NW

NE

SE

SW

halo node

i

j

Figure 2.4: structured mesh – location within a box (illustrated here for 2-d meshes).

Given the location of a halo node, xG, the interpolation routine determines which “box”, i.e.
octet (3-d) or quartet (2-d) of nodes (see Figure 2.4), this point lies within and the fractional
distances fi, fj, fk from “west”, “south” and “bottom” faces of this box, respectively. These
fractional distances are computed from the projected displacements of the halo node onto the
associated faces of the box. (Note that these interpolation boxes have the nodes as vertices
and are not the same as the computational finite volumes, which have nodes at their centres.)
A point is formally within a particular box if

10,10,10 ≤≤≤≤≤≤ kji fff

The search routine to find which box a halo node lies within is optimised by:
• only searching in designated blocks on either side of the interface;
• for each test box doing an initial quick check to confirm that the point lies within the

range of x, y, z values at its corners;
• cycling through the boxes starting at the last used by this halo node; if the halo node

hasn’t moved very far then the relevant box will be found immediately.
An advantage over the “nearest-node” approach is that once the appropriate box has been
found then searching can stop, whereas for “nearest-node” searches one must obviously
continue testing all possibilities. The major restriction is that the mesh must be (multi-block)
structured.

Multi-linear interpolation is then used to find the value of each variable φ at the halo node;
e.g. in 2-d (see Figure 2.4 for node arrangements):

])1[(])1)[(1(NEiNWijSEiSWij ffffff φ+φ−+φ+φ−−=φ

The extension to 3 dimensions is obvious. The simple multilinear interpolation also ensures
that as the halo node moves from one box to its neighbour then φ changes continuously.

Some simple 2-d (rotating cylinder) and 3-d (rotating cube) examples are illustrated below.
The latter shares essentially the same mesh-interface topology as the marine current turbine,
but with a considerably simpler rotating body.

 Page 9

Figures 2.5, 2.6 and 2.7 show simulations of the laminar flow about a 2-d rotating cylinder
with Reynolds number 200/Re 0 =≡ DU and non-dimensional rotation rate

5.0/ 0 =≡ UR (D is diameter, R is radius and U0 is the approach-flow velocity). Detailed

computations have been performed for a variety of rotation rates at this Reynolds number by
Stansby and Rainey (2001) and Mittal and Kumar (2003). The latter made a comprehensive
study of flow behaviour for 0 < < 5, showing two-sided vortex shedding to exist for
 < 1.91, with very high lift coefficients for the larger values of by the Magnus effect. A

detailed grid- and timestep-dependence study has not been carried out here, the main purpose
being to investigate the efficacy of the sliding-interface approach; however, results for
fluctuating lift at this rotation rate are consistent with those of both journal papers.

Figure 2.5 shows the two-part mesh: an inner fine mesh which rotates with the cylinder and
an outer coarser mesh that is stationary. The two are separated by a sliding interface.

Figure 2.5: 2-d rotating cylinder – computational mesh.

Figure 2.6 shows shaded plots of flow variables (pressure and vorticity), overlaid by velocity
vectors and streamlines respectively. The sliding interface cannot be detected in these plots,
indicating that the interface is successfully transmitting flow information.

Figure 2.7 shows computed lift coefficient, comparing results for two timestepping schemes
(Crank-Nicolson and Gear’s method) and also the results with a completely stationary mesh
(but still rotating cylinder walls). The non-dimensional timestep used is 004.0/. 0 =DUt .

There are small differences in extreme values between stationary and rotating meshes, but the
basic lift-coefficient distributions – peak and trough values of 0.4 and 2.1, with a Strouhal

 Page 10

number 195.0/ 0 =UfD – are consistent with the results of Mittal and Kumar (2003).

(a)

(b)

Figure 2.6: 2-d rotating cylinder: (a) pressure and flowfield; (b) vorticity and streamlines.

 Page 11

Figure 2.7: 2-d rotating cylinder – lift coefficient.

A second case considered was that of a rotating cube. The multiblock structure for this is
shown in Figure 2.8. A central cylindrical core including the cube spins inside an outer
cuboid domain. There are sliding interfaces on the upstream, downstream and curved surfaces
of the cylindrical mesh: the same topology as will be employed for a marine current turbine.
The flow is laminar with Reynolds number (based on cube side L and approach-flow velocity
U0) of 100. The non-dimensional angular velocity L/U0 is 1.0. The non-dimensional
timestep t U0/L = 0.005 and the Crank-Nicolson timestepping method is employed.

Figure 2.9 shows the streamwise pressure distribution and streamlines. As for the previous
test case there is no detectable signature of the sliding interface.

Figure 2.8: 3-d rotating cube – mesh blocks.

(a)

 Page 12

(b)

Figure 2.9: 3-d rotating cube: (a) pressure on a streamwise slice; (b) streamlines.

 Page 13

2.4 Implementation in Code_Saturne

halo node

nearest node

xH

0x

x

y

Figure 2.10: unstructured mesh – location relative to nearest node.

In our current implementation in Code_Saturne the value of a variable φ at a halo node xH is
determined by (see Figure 2.10):
• finding the nearest node x0;
• using a truncated Taylor-series expansion using the computed derivatives at x0:

)()()(000 xxxx φ∇•−+φ=φ HH

A potential deficiency is that φ will change discontinuously as the halo node is “passed” from
one nearest node to its neighbour as the mesh slides. In practice, this does not seem to be a
problem, but alternative interpolation schemes are being considered.

The method described in the previous section is implemented in Code Saturne v2.0.1. A tree
structure of the key subroutines is shown in Figure 2.11. Modified subroutines are shown in
italics and completely new subroutines underlined. A description of the subroutines follows.

caltri

inivar usiniv

tridim

usclim

navsto

findha

preduv

resolp

upcoef

codits upcoef

Figure 2.11: tree structure of key subroutines used in internal-interface development; italics

indicates “modified” and underlining indicates “new”.

 Page 14

caltri
 The main calling tree of Code Saturne. It controls the fluid solver as well as writing

the post-processing files.
codits
 Iterative solver for a variable.
findha
 The search routine for closest cell centre to the halo node. Each side of the interface

searches through the cells only on the other side.
navsto
 The Navier-Stokes solver. Calls the velocity prediction and pressure-correction

subroutines as well as making the velocity correction. After velocity and pressure
corrections the internal interface is updated by calls to upcoef.

preduv
 The velocity prediction.
resolp
 The pressure correction.
tridim
 Calls the main parts of the fluid solver. One call of tridim essentially corresponds

to one time step. tridim calls the boundary-condition updaters as well as the
Navier-Stokes solvers and mesh modifications using ALE. The subroutine has been
modified so that calls to the turbulence subroutines are made within the inner loop.
An inner-loop convergence criterion based on normalised residuals has been added.

usclim
 Defines the boundary conditions. Here it is also used to define the internal interface as

a Dirichlet boundary. The search routine (findha) is called and the values of all
variables on the interface are updated.

usiniv
 Called once at the start of a calculation and once after a restart. It is used to initialise

the variables in the flow. In this application cells on either side of the internal
interface are identified and their cell-centre coordinates stored.

Because Code_Saturne is very highly parallelised and cells abutting the interface may be
attached to many different processors, memory management has to be put in place to
assemble pointers to all interface-abutting cells. An investigation of the overheads associated
with interfacing and the associated mesh movement has been performed and is illustrated in
Figure 2.12. The case is a 3.1-million-cells calculation of flow about a sphere and was
performed on the University’s Red Queen research cluster; (speed-up is normalised by the
computation time for one 12-core “blade”). The Figure indicates that Code_Saturne
parallelises very well, but that overheads associated with the ALE method can easily exceed
25% of processor time.

 Page 15

Figure 2.12: speed-up of different interface methods (flow about a sphere; 3.1 million cells)

Validation test cases have been computed to examine the behaviour of the interfacing method
in Code_Saturne. These are 2-d flow about a stationary or rotating cylinder at Re = 200 and
3-d flow about a sphere.

The default number of iterations of the inner loop (NTERUP) in Code_Saturne is 1, making
each timestep explicit. Implicit schemes are inherently more stable and when there is a
sliding interface values on the interface must necessarily be obtained iteratively. Testing
suggests that a minimum number NTERUP = 5 is necessary for the cylinder test case (see
Figure 2.13 for example). As this is likely to be test-case- (and timestep-) dependent, we have
also developed an inner-loop convergence criteria based on the normalised sum of residuals
to establish convergence within a timestep more reliably.

 NTERUP = 3 NTERUP = 5

Figure 2.13: effect of changing the number of inner-loop iterations on continuity at an
interface.

 Page 16

By examining the fluctuating lift coefficient for a rotating cylinder we also investigated how
far the interface could be allowed to slide in one timestep. A CFL-like condition – that halo
cells should not pass more than one donor cell in a timestep – was envisaged. However our
findings were that this was not sufficient and, in general, it is recommended that the interface
should not slide by more than half a cell in one timestep.

The effect of different relative rotation rates (for a definition of see Section 2.3) and
different timestepping schemes were also investigated. Figure 2.14 shows values of
fluctuating lift as a function of time at = 0.5 and = 1.0. With 2nd-order timestepping the
values for both = 0.5 and = 1.0 compare very favourably with the results of Mittal and
Kumar (2003), with very little difference between results with our own interface method
(with and without rotating the mesh) and the normal “pasting” approach for composite
meshes of Code_Saturne. However, it also indicates that a second-order timestepping method
is highly desirable for accuracy in this case.

Figure 2.14: time-dependent lift coefficient for three methods of simulating a rotating
cylinder; upper graphs: = 0.5; lower graphs: = 1.0.

 Page 17

The new interfacing method in Code_Saturne has also been tested for flow about a rotating
sphere. The flow is obviously important to fans of ball sports, but also in ballistics and
aerosol science. Experimental data with which to compare can be found in Oesterlé and Dinh
(1998), whilst computations can be found in Kim (2009). The experiments considered
Reynolds numbers and non-dimensional rotation rates in the ranges
 10 < Re < 140 and 1 < < 6
The mesh and boundary conditions are shown in Figure 2.15 and an overview of the
computed flow field in Figures 2.16 and 2.17. The position of the interface has been marked
in the latter: its position is gratifyingly not detectable in the flow-field plots.

Figure 2.15: mesh and boundary conditions for computations of flow about a sphere.

Figure 2.16: computed flow about a sphere: streamlines coloured by vorticity

 Page 18

(a)

(b)

Figure 2.17: computed flow about a sphere; (a) pressure coefficient; (b) velocity magnitude.

Computations have focused on the particular case of Re = 25.45, = 1.0 (case Ba12 in
Oesterlé and Dinh, 1998). Although this flow could obviously be computed with a single
non-rotating mesh and imposed wall velocity of the sphere our object was to test the
interfacing routines and to this end we have generated a mesh in two parts, corresponding to
the regions inside and outside an internal interface at twice the sphere radius. We consider
three strategies for computing the flow:
• case A: sliding-mesh interface routines with inner mesh rotating with the sphere;
• case I: interface routines but mesh actually stationary (sphere surface rotating);
• case J: usual Code_Saturne pre-processor routines to join or “paste” the meshes.

 Page 19

Preliminary results for drag and lift coefficients are shown in Table 2.1. Results thus far are
only preliminary and grid- and timestep convergence has clearly not been demonstrated. In
particular, we have only tried first-order implicit timestepping and results from the cylinder
calculation have already shown that second-order timestepping is to be preferred for accuracy
at moderate sizes of timestep. However, our own interfacing routines agree well with the
more complex method used by the Code_Saturne pre-processor to “paste” two meshes. The
rotating-mesh method – which is not strictly needed for this case – will clearly require either
a smaller timestep or a more accurate timestepping method.

Case: CD CL
A: interface routines with rotating inner mesh 2.467 0.842
I: interface routines with stationary mesh, rotating sphere 2.506 1.011
J: meshes joined by Code_Saturne 2.509 1.011
Oesterlé and Dinh (1998) – 1.196

Table 2.1: Drag and lift coefficients for flow about a rotating sphere.

 Page 20

3. MARINE CURRENT TURBINE: GEOMETRY AND SIMULATION DETAILS

3.1 Description of Experiment

The MCT device to be simulated is that of Bahaj et al. (2007b). In that series of experiments
power and thrust coefficients were measured for a range of tip speed ratios and pitch settings
in a towing tank (and also a cavitation tunnel, although these will not be simulated here). The
3-bladed MCT had a rotor diameter of 800 mm and nacelle diameter 100 mm. The support
diameter was also 100 mm. Blades were constructed from NACA 63-8xx profiles; chord,
pitch and thickness distributions are given at 17 stages along the blade. The experiments
showed considerable sensitivity to the overall pitch of the blades; in all our simulations we
have used the optimal blade root pitch setting of 20°, although the mesh-generation scripts
could be adapted to use other values. The towing tank had breadth 3.7 m and depth 1.8 m,
with the rotor centred 0.84 m below the free surface. The area blockage ratio is 7.5% and
Bahaj et al. made thrust-dependent blockage corrections before presenting their data, which
we have also done for consistency. Power and thrust coefficients were measured at tip-speed
ratios (TSRs) of up to 12, with optimal power takeoff at a TSR of about 6.

3.2 Computational Mesh

A geometry and mesh has been built with Fluent’s meshing tool Gambit to conform as
closely as possible to that in the experimental measurements of Bahaj et al. (2007b). A
complete geometry has now been modelled, including the support. This is composed of 5
separate meshes (see Figure 3.1) – an inner turbine mesh and 4 outer meshes. The latter, non-
rotating, parts are pasted together with Code_Saturne’s pre-processor, with the interface
between these and the rotating turbine mesh being handled by our own sliding-interface
procedure. A typical cell count is given in Table 1. (Prior to the full-geometry simulations a
number of different grid resolutions were tested with RANS models on the rotating blade and
nacelle geometry, without the mast and various different meshes of up to 4 million cells have
been used during development.) The domain extends a distance 3D upstream and 10D
downstream of the rotor, where D is the rotor diameter.

Region Number of cells
Turbine 1 165 878
Mast 252 768
Upstream 231 360
Surround 205 600
Downstream 242 900

Total: 2 098 506

Table 1: numbers of cells in different portions of the mesh.

 Page 21

Figure 3.1: subdivision of the flow domain into different mesh regions

Individual blades are meshed using a C-mesh with 62 points around the profile and ten cells
on the blunt trailing edge (Figure 3.2). Polyhedral elements are required outside the prism
layer on the blade tips to ensure the outer surface can be meshed in a structured manner. This
is to enforce regularity at the sliding-mesh interface. The circumferential sliding interface is
non-conforming, with 240 cells on the inside and 160 cells on the outside. This flexibility of
the interface method assists us in reducing the overall cell count in less important regions of
the flow. The mesh near a blade is illustrated in Figure 3.2 and the overall surface mesh on all
solid boundaries, rotating or otherwise, is shown in Figure 3.3.

Figure 3.2: detail of the mesh about a blade.

 Page 22

Figure 3.3: overall surface mesh.

3.3 Flow Parameters

For reference we note here the definition of the principal performance parameters:

 Tip-speed ratio:
0

TSR
U

R=

 Thrust coefficient:
AU

thrust
CT 2

02
1

=

 Power coefficient:
AU

power
CP 3

02
1

=

Here, is the angular velocity, R the rotor radius, U0 the approach velocity (or towing speed)
and A the area swept out by the rotor. Power is determined from torque × angular velocity.

In Code_Saturne, where all variables are entered in metre-second units, the following
conditions were applied:
 inlet velocity: U0 = 1 m s–1
 turbulence intensity: 0%, 10% or 20% (0% replaced by 1% for RANS)
 rotor diameter: D = 0.8 m (radius R = 0.4 m)
 angular velocity: = 10, 15, 20 rad s–1 (1 revolution 0.628, 0.419, 0.314 s)
 density: = 1000 kg m–3
 viscosity: = 1.0×10–3 kg m–1 s–1

 Page 23

These correspond to non-dimensional parameters

 50 100.8Re ×=≡
DU

 8or6,4TSR
0

=≡
U

R

3.4 Blockage Correction

Although we simulate exactly the same flow domain as in the experiments, i.e. our side
boundaries correspond to those of the towing tank, Bahaj et al. (2007a) did not present the
raw values of CP, CT and TSR in their reports but instead made a blockage correction to
present them as equivalent “open-water” measurements. In order to compare like with like we
make the same correction, which depends on the area blockage ratio A/C and the thrust
coefficient CT. Details are given in Bahaj et al.’s paper. The sequence of calculations follows.

• Solve (numerically, e.g. by repeated bisection) for r:

TC

r

r
C

A

r
C

A

r
1

)1(11

)1(2

2

2

−=
−++

−
−

 (r corresponds to U3/U2 in Bahaj et al.’s notation)

• Find

1

)1(11

1
2

20

1

−
×

−++

+=
r

C

r
C

A

r

U

U T

4/)/(

/
2

01

01

0

0

TCUU

UU

U

U

+
=

′

 (U1 is the velocity at the disk according to actuator-disk theory; a prime denotes an
equivalent “open-water” quantity.)

• The blockage-corrected coefficients are then:

3

0

0

′
=′

U

U
CC PP

2

0

0

′
=′

U

U
CC TT

′
=′

0

0TSRRTS
U

U

In the present case the area blockage ratio A/C = 0.075. With a typical thrust coefficient
CT = 0.8 this gives 973.0/ 00 =′UU and multiplicative blockage-correction factors 0.922,

0.947 and 0.973 for power coefficient, thrust coefficient and TSR respectively. Note that the
corrections depend on CT and can become very significant for large thrust.

 Page 24

3.5 RANS Simulations

Using the model described in Section 3 flow simulations were undertaken with the standard
k- model, using Code_Saturne’s “scalable” wall functions. Dirichlet conditions were applied
to all transport variables at inflow, with a fixed-pressure boundary condition is employed at
outflow. Side-wall boundaries and top and bottom of the domain were modelled as slip walls
(the most appropriate boundary condition to simulate a towing tank).

Three different turbulent intensities (i) were considered: 1%, 10% and 20%. The inlet
turbulence scalars were related to these by

 2
02

3
0)(iUk = ,

ml

kC 2/3
0

4/3�
0 =

where the inlet mixing length lm is taken as 0.7 times the turbine axis immersion depth.

Three different TSRs have also been considered: 4, 6 and 8.

In all cases a slope-limited blend of central and upwind differencing is used for advective
fluxes together with first-order, fully-implicit timestepping.

The requirement that the interface slides no more than ½ cell in one timestep sets the
following restriction on timestep size:

cellN

t
2

2
1 ×≤ or

cellN
t ≤

In a typical case, Ncell = 160, = 15 rad s–1, giving a maximum timestep of 0.0013 s. For our
calculations a timestep of 0.001 s was used (except for TSR = 8, when t = 0.0008). The
maximum CFL number was about 70. Note that for fully-implicit timestepping there is no
automatic CFL restriction. Other timescales are:
• one blade rotation (0.4189 s, or U0t/D = 0.524 when TSR = 6);
• one domain pass-through time (10.4 s, or U0t/D = 13)

Different cases were run on EdF’s Blue Gene high-performance computer using 2048
processors and on the University of Manchester’s CSF with 256 processors.

3.6 LES Simulations

LES calculations have been undertaken, using the same geometry and mesh (just over 2
million cells) as the RANS calculations (including both rotor and support). Whilst the
pressure distribution on the blades is relatively unchanged the less-diffusive behaviour in the
wake means that vortical structures should be better preserved (which is of importance when
considering fluctuating forces on both rotor and mast and the operation of turbines in arrays).

In all cases to be reported here we have used the standard Smagorinksy model for the
unresolved scales, with coefficient Cs = 0.065. As with the RANS calculations a slope-
determined blend of central and upwind differencing is used for advective fluxes. Second-
order timestepping is used with a timestep of 0.0001 s (the maximum Courant number being
about 14).

Basic wall functions are used at solid boundaries. These are defined by iterating the log-linear

 Page 25

velocity profile:

)(
�� pyu

f
u

u = , where

<

>+=
+++

+++
+

lim

lim,ln
1

)(
yyy

yyBy
yf

for the friction velocity u� (from which the wall stress 2�uw = can then be determined). y+

values vary from about 7 to 400. No Van Driest damping is used.

As for the RANS calculations, three TSRs are considered: 4, 6 and 8.

Inflow turbulence intensities of 0, 10% and 20% have been employed. The non-zero
turbulence intensity cases were incorporated using a basic synthetic eddy method (SEM)
already built into Code_Saturne. Fluctuating velocities at inlet are given by
 itrUtu)()(�0�� +=

where U0 and i are the prescribed mean velocity and turbulence intensity and r� is a time
series of random fluctuations with mean zero, variance 1 and an appropriate Lagrangian
timescale. In this approach the turbulence is necessarily isotropic. In the future it is hoped to
do simulations with the more advanced “divergence-free synthetic-eddy method” (DFSEM)
currently being developed by PhD student R. Poletto, which is aimed improving the level of
pressure fluctuations at inlet.

Calculations were performed on EdF’s Blue Gene high-performance computer using 2048
processors. On this a single timestep took about 16-20 s, meaning a real time of about 0.48 s
(just over one rotation at TSR = 6) can be computed in a day.

 Page 26

4. MARINE CURRENT TURBINE: RESULTS

Tables 2 and 3 gives the main quantitative outputs of the simulations: namely the thrust and
power coefficients as a function of:
• turbulence model (RANS or LES);
• tip speed ratio (TSR);
• inflow turbulence intensity.
To compare with experiment the second part of the table gives blockage-corrected results
using the formulae of Section 3.4. This also leads to a small correction of TSR. Experimental
results in the table have been read from curve fits, but values in the later graphs are taken
directly from a University of Southampton data report (Bahaj, private communication)

Uncorrected
TSR Model Inlet turbulence intensity CT CP

4 k- RANS 1% 0.5283 0.2323
10% 0.5420 0.2047
20% 0.5554 0.1837

LES 0% 0.5599 0.3359
6 k- RANS 1% 0.7291 0.2365

10% 0.7350 0.1958
20% 0.7437 0.1592

LES 0% 0.8137 0.4174
10% 0.8178 0.4032
20% 0.8198 0.4183

8 k- RANS 1% 0.8662 0.1340
LES 0% 0.9209 0.3030

Blockage-corrected (experimental results read from curve fits)
TSR Model Inlet turbulence intensity CT CP

3.95 k- RANS 1% 0.514 0.223
3.94 10% 0.527 0.196
3.94 20% 0.539 0.176
3.94 LES 0% 0.544 0.321
4 Experiment 0% 0.60 0.40
5.87 k- RANS 1% 0.697 0.221
5.86 10% 0.702 0.183
5.86 20% 0.709 0.148
5.83 LES 0% 0.769 0.384
5.83 10% 0.773 0.370
5.83 20% 0.774 0.384
6 Experiment 0% 0.80 0.440
7.75 k- RANS 1% 0.812 0.122
7.71 LES 0% 0.855 0.271
8 Experiment 0% 0.92 0.390

Table 2. Thrust and power coefficients

 Page 27

Figures 4.1 and 4.2 summarise the computed thrust and power coefficients as a function of
TSR; it includes the complete experimental data set as provided by Prof. Bahaj.

Figure 4.1: Thrust coefficient vs TSR at turbulence intensity 0%.

Figure 4.2: Power coefficient vs TSR at turbulence intensity 0%.

 Page 28

In general the thrust coefficient is well predicted by both methods, with LES giving slightly
better agreement with experiment up to the maximum-power point (TSR = 6), but slightly
less satisfactory results at off-design incidence. This is presumably related to the ability to
predict boundary-layer behaviour on the blades in conditions approaching stall and merits
further investigation of mesh dependence and wall-boundary treatment here.

The power coefficient is more sensitive to the computed pressure and stress distributions and
is significantly under-predicted by the k- model. The LES simulations are an improvement,
underpredicting the maximum CP value by about 10%; nevertheless, the underprediction at
higher rotation speeds is quite significant. Note that, due to the large thrust, there is quite a
significant blockage correction (about 0.894) applied to the power coefficient here, a feature
that Bahaj et al. (2007) commented on.

A parametric study of the effect of inflow turbulence was also carried out and the effect on
the mean thrust and power coefficients is presented in Figure 4.3. The effect on these mean
coefficients is relatively modest, except for the computed reduction in power coefficient with
the k- model, where an increased level of turbulence leads to thicker boundary layers and a
reduction in lift on the blades.

Figure 4.3: Thrust and power coefficients vs inflow turbulence intensity.

 Page 29

Inflow turbulence may, however, have a significant effect on the fluctuating loads on the
turbine. This is illustrated in Figure 4.4 for RANS and Figures 4.5 for LES. The dominant
mode in most figures is expected to be the 3-cycles-per-0.42 s associated with the individual
blades passing in front of the support mast (temporarily raising the back pressure). This is
observed in the RANS calculations (Figure 4.4). For LES, however, whilst this frequency is
clear in fluctuating moments about the y and z axes (Figure 4.5b) it is not observed in the
main moment giving rise to the power coefficient (Figure 4.5a). The reason is unclear.

(a) 1% inflow turbulence

(b) 10% inflow turbulence

Figure 4.4: Time-variation of thrust and power coefficients for RANS computations

 Page 30

(a) Power coefficient (proportional to torque coefficient about the streamwise axis)

(b) Non-streamwise-axis torque coefficients

Figure 4.5: Time-variation of coefficients for LES computations (TSR = 6; 0% turbulence)

The effect of turbulence is complex: part of the variation is due to the fluctuating pressure
field on the blades, whilst another part is due to the wake interaction with the mast. The
RANS calculations suggest that for reasonable turbulence levels (say 10%) the regular
fluctuations in load brought about by the changes of orientation with respect to the support
mast are larger in magnitude than those associated with turbulence. However, the reason for
the additional frequencies apparent in the LES power-coefficient time series are, at present,
unclear.

 Page 31

The pressure coefficient on the blades is plotted (for RANS calculations) in Figures 4.6 and
4.7, whilst the pressure coefficient on all solid surfaces is shown in Figure 4.8. Note that there
is a difference in normalisation here. On the blades in order to conform to standard aerofoil
practice the normalising dynamic pressure is based on the relative approach velocity at each
individual radius r; thus:

)(222

02
1 rU

pp
c ref

p +
−

=

For the global pressure distribution, however, the dynamic pressure is simply taken as that in
the approach flow:

2
02

1 U

pp
c ref

p

−
=

and, as a result of the large speeds at the blade tips, the pressure coefficients in Figure 4.8 are
in places considerably greater in magnitude than 1.

Plotting the pressure coefficient as a function of TSR in Figure 4.6 we note that there is a
considerable reduction in lift (as evidenced by the difference in pressures on suction and
pressure surfaces) when TSR = 8. This is particularly prevalent at the larger radii and is the
reason for the considerable drop in power coefficient here.

Plotting the pressure coefficient as a function of inflow turbulence intensity in Figure 4.7
shows a relatively small influence of this parameter, with most of the differences occurring in
the lower-speed region near the hub which does not contribute significantly to overall power.

 Page 32

Figure 4.6: pressure coefficient on blade, 1% turbulence, RANS simulations; normalisation

based on local approach dynamic pressure, i.e.)(/)(222
02

1 rUppc refp +−=

TSR=4

TSR=6

TSR=8

 Page 33

Figure 4.7: pressure coefficient on blade, TSR = 6, RANS simulations; normalisation based

on local approach dynamic pressure, i.e.)(/)(222
02

1 rUppc refp +−=

Turbulence 10%

Turbulence 20%

Turbulence 1%

 Page 34

(a) All surfaces

(b) Individual blade

Figure 4.8: pressure coefficient on model surfaces (RANS simulations); normalisation based
on upstream dynamic pressure, i.e. 2

02
1/)(Uppc refp −= ; scales are not intended to indicate

maximum and minimum values.

 Page 35

Figures 4.8 and 4.9 show the vortex structure in the wake of the turbine for RANS and LES
simulations. Note that blade-tip-generated vortex structures are better preserved downstream
in LES than they would be by the more diffusive RANS calculation and there is a strong
interaction with the support mast. Note also the well-established vortex occurring behind the
latter.

Figure 4.8: mean vorticity field (k- RANS)

Figure 4.9: iso-Q field (LES)

 Page 36

5. NEXT STAGES

Despite a delay due to the unavailability of EdF’s Blue Gene computer for a period this
summer, parametric studies of the effect of operating point (TSR) and inflow turbulence
models have now been performed for both RANS and LES calculations. Mean and
fluctuating thrust and power coefficients have been determined as functions of time. On the
meshes used RANS calculations take of the order of 1-2 days (on a high-performance
computer), but LES calculations may take more than a week. It would be highly desirable to
“tidy up” our results by performing more extensive grid-dependence checks.

RANS calculations are less computationally intensive and a basic k- model has been shown
to provide acceptable values for the thrust coefficient but a low power coefficient and
considerable diffusion in the wake. Alternative RANS turbulence models available in
Code_Saturne (including SST k-) will also be investigated, as will non-uniform mean and
turbulent velocity profiles. Alternative wall boundary conditions – “standard” wall functions
and low-Re models – will also be investigated as part of the grid-dependence checks.

LES calculations show an improvement in predictions of the power coefficient, although still
underprediction for off-design incidence. It is hoped to improve the specification of inflow
turbulence – in particular, more realistic pressure fluctuations – by incorporating the work on
divergence-free synthetic-eddy models currently being developed by PhD student R. Poletto.
Following grid-dependence checks the dynamic LES model currently available in
Code_Saturne will also be investigated.

The next deliverable (MD1.3) specifies two major new items:
• waves;
• real turbine geometry.
Both of these will be investigated in the first instance with time-dependent RANS. For the
first we will be extending the work initiated by Olivier Cozzi and Yacine Addad to include
free-surface movement in the outer domain. For the last item a CAD model of the TGL
turbine has already been passed to us for meshing.

 Page 37

REFERENCES

Archambeau, F., Mechitoua, N. and Sakiz, M., 2004, “Code_Saturne: a Finite-Volume Code
for the Computation of Turbulent Incompressible Flows – Industrial Applications”,
International Journal on Finite Volumes, 1.

Bahaj, A.S., Batten, W.M.J. and McCann, G., 2007a, “Experimental verifications of
numerical predictions for the hydrodynamic performance of horizontal axis marine current
turbines”, Renewable Energy, 32, 2479–2490.

Bahaj, A.S., Molland, A.F., Chaplin, J.R. and Batten, W.M.J., 2007b, “Power and thrust
measurements of marine current turbines under various hydrodynamic flow conditions in a
cavitation tunnel and a towing tank”, Renewable Energy, 32, 407–426.

Batten, W.M.J., Bahaj, A.S., Molland, A.F. and Chaplin, J.R., 2008, “The prediction of the
hydrodynamic performance of marine current turbines”, Renewable Energy, 33, 1085–1096.

Beaudoin, M. and Jasak, H., 2008, “Development of a Generalized Grid Interface for
turbomachinery simulations with OpenFOAM”, Open Source CFD International Conference
2008, Berlin, Germany.

Blades, E. L. and Marcum, D. L., 2007, “A sliding interface method for unsteady
unstructured flow simulations”, International Journal for Numerical Methods in Fluids, 53,
507-529.

Fenwick, C. L. and Allen, C. B., 2006, “Development and validation of sliding and non-
matching grid technology for control-surface representation”, Proceedings of the Institution
of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 220, 299-315.

Kim, D., 2009, “Laminar flow past a sphere rotating in the transverse direction”, Journal of
Mechanical Science and Technology, 23, 578-589.

Lien, F.S., Chen, W.L. and Leschziner, M.A., 1996, “A multiblock implementation of a non-
orthogonal, collocated finite volume algorithm for complex turbulent flows”, International
Journal for Numerical Methods in Fluids, 23, 567–588.

Mittal, S. and Kumar, B., 2003, “Flow past a rotating cylinder”, Journal of Fluid Mechanics,
476, 303-334.

Oesterlé, B. and Dinh, T. B. ,1998), “Experiments on the lift of a spinning sphere in a range
of intermediate Reynolds numbers”, Experiments in Fluids, 25, 16-22.

Petit, O., Page, M., and Beaudoin, M., 2009. The ERCOFTAC centrifugal pump OpenFOAM
case-study”, 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic
Problems in Hydraulic Machinery and Systems, Brno, Czech Republic.

Stansby, P.K. and Rainey, R.C.T., 2001, “A CFD study of the dynamic response of a rotating
cylinder in a current”, Journal of Fluids and Structures, 15, 513-521.

 Page 38

Steijl, R. and Barakos, G., 2008, “Sliding-mesh algorithm for CFD analysis of helicopter
rotor-fuselage aerodynamics”, International Journal for Numerical Methods in Fluids, 58,
527-549.

	ETI Website Disclaimer v3
	MD1.2 CFD modelling part 2 Turbulence_v1.2

